
Rexx and NetRexx
Warpstock 2017, Rotterdam
René Vincent Jansen 2017-05-21

Agenda

Rexx

What is it

Compact History

Where are we now?

Future as open source

Rexx

Scripting Language

Started out as an interpreter

‘Human instead of computer oriented’

Family of implementations

What is a scripting language

A scripting language, script language or extension language is a
programming language that allows control of one or more software
applications. "Scripts" are distinct from the core code of the application,
as they are usually written in a different language and are often created
or at least modified by the end-user. Scripts are often interpreted from
source code or bytecode, whereas the applications they control are
traditionally compiled to native machine code.

Early script languages were often called batch languages or job control
languages. Such early scripting languages were created to shorten the
traditional edit-compile-link-run process.

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/End-user_(computer_science)
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Batch_language
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Linker_(computing)

History

1979, Mike Cowlishaw, IBM VM, Hursley

Initially reprimanded, but strong undercurrent and
eventually Mike was made an IBM fellow

Was called REX (Reformed eXecutor), but after IBM
lawyers intervened and money was spent, REXX was
the new name

Bacronym of Restructured Extended Executor

&&Roots - EXEC2
Rexx’ predecessor was called EXEC2

A Single macro language for many applications
(Stephenson, 1973)

This language consisted mainly of Ampersands
&IF &NODE&J l= &LOCAL &USER = &STRING OF

The plan was to have a PL/1 based replacement that
‘turned things around’ - a small percentage would be
literals

What came out
A language designed for the user (that is, programmer)
instead of the language implementer

Unlimited precision arithmetic

Strong PARSE statement

Nothing to declare

Strong built-in TRACE tool

Relatively few keywords

Strong String processing

History

Strong user community influence, VMNET was new

Principle of design and document first, then implement
and test

Circulated on the network between IBM sites, made
into a product by customer demand

History (IBM)
1979 Mike Cowlishaw starts work on REX

1981 First Share presentation on REX

1982 First non-IBM location to get REX is SLAC

(Stanford Linear Accellerator Center)

1983 Command Language for IBM VM/CMS

1989 REXX Supported on MVS (TSO Extensions V2)

1990 REXX Supported on OS/2 (EE) and OS/400

1980
vm/370 - CMS

History

1985 Mansfield REXX for PC/DOS

1987 AREXX for the Commodore Amiga

1990 Uni-Rexx for Unix, AIX, Tandem (Kilowatt)

1991 REXX for DEC/VMS

1992 REXX/imc and Regina

Regina

By Anders Christensen, maintained by Mark Hessling

For Linux, FreeBSD, Solaris, AIX, HP-UX,
etc.) and also to OS/2, eCS, DOS, Win9x/Me/
NT/2k/XP, Amiga, AROS, QNX4.x, QNX6.x,
BeOS, MacOS X, EPOC32, AtheOS, OpenVMS,
SkyOS and z/OS OpenEdition.

History

1990 First Rexx Language Association Symposium
Held

1991 First REXX ANSI Committee meeting held

1996 ANSI X3274–1996 “Information Technology –
Programming Language REXX”.

History

1989 Rexx is a now also a compiled language

Based on research by IBM Haifa, developed by IBM
Vienna Software Development Lab, Austria

runtime performance improvements, sourceless
distribution of scripts and programs

Object Rexx
Simon Nash, Hursley Lab, starting 1989

Long gestation process - delivered first in OS/2 in 1997

Commercial versions for Windows NT and AIX

In 2004 released as Open Source by IBM and
controlled by The Rexx Language Association

Henceforth known as Open Object Rexx (ooRexx)

www.oorexx.org

http://www.oorexx.org

NetRexx

The other Object Oriented successor to Classic Rexx

1995, Mike Cowlishaw

Runs on the Java VM

Compiles NetRexx to Java classes

Added an interpreter in 2000

Will be open sourced, probably this year

Where are we now

Rexx had its heyday of new activity around 1995

Reputation went -undeservedly- downhill with the
“demise” of OS/2 and Workplace OS

Classic Rexx is Strong on the Mainframe

For the open source implementations, life has just
begun

There is more value there than in most places

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Wikipedia

18

IBM NetRexx
From Wikipedia, the free encyclopedia

NetRexx is IBM's implementation of the Rexx programming
language to run on the Java virtual machine. It supports a
classic Rexx syntax along with considerable additions to support
Object-oriented programming in a manner compatibile with
Java's object model. The syntax and object model differ
considerably from Open Object Rexx, another IBM object-
oriented variant of Rexx which has been released as open
source software.
NetRexx is free to download from IBM[1].

http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Rexx
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Java_Platform
http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object_model
http://en.wikipedia.org/wiki/Open_Object_Rexx
http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Open_source_software
http://www-306.ibm.com/software/awdtools/netrexx/library/netrexxo.html

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Peculiarities of NetRexx

§ The Rexx Data type - implicit in other implementations, but not named
due to untyped usage

§ PARSE
§ TRACE
§ Arbitrary numeric precision & decimal arithmetic
§ Concatenation by abuttal
§ No reserved words
§ Case insensitive
§ Automates type selection and declaration
§ Autogeneration of JavaBeans properties (with properties indirect)

§ Philosophy: a language should be easy for users, not interpreter writers
§ ‘No reserved words’ ensures that old programs are never broken by

language evolution

19

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

The Rexx Data Type

§ This is where statically typechecked meets type-less
§ A Rexx instance can be a number or a (Unicode) string of characters
§ 3+4 is the same as “3” + “4”
§ We can perform (arbitrary precision) arithmetic on it when it is a number
§ The Rexx type keeps two representations under the covers (if needed)

§ The Rexx way to handle decimal arithmetic ended up in Java and in
IEEE 754r, implementation of BigDecimal actually written in NetRexx

§ Automation inter-conversion with Java String class, char and char[]
arrays, and numeric primitives (optional)

You can forego the language and use the Rexx Datatype, from the runtime
package, in your Java source

Equally, you can decide not to use the Rexx type at all in your NetRexx
source

20

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Numeric Precision

(options binary to avoid this and have Java primitive types as much as
possible)

Rexx has arbitrary precision numbers as a standard - implemented in the
runtime Rexx Datatype.

21

say 1/7

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Parse

§ not your standard regexp parser - it is template based
§ can do lispy things

22

23

Would be this
in NetRexx

cdr = “foo bar baz”
loop while cdr <> ‘’
 parse cdr car ‘ ‘ cdr

 line = line car.upper(1,1)
end

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Built-in TRACE

§ for you (and me) who still debug best using print statements - saves
time

§ adds them automatically during compile
§ can leave them in and switch off during runtime
§ best way to debug server type software
§ can ‘trace var’ to keep a watchlist
§ or ‘trace results’ to see results of expressions

24

 --- fact.nrx
 8 *=* if number = 0
 >>> "0"
 9 *=* else
 = return number * factorial(number-1)
 >>> "4"
 8 *=* if number = 0
 >>> "0"
 9 *=* else
 = return number * factorial(number-1)
 >>> "3"
 8 *=* if number = 0
 >>> "0"
 9 *=* else
 = return number * factorial(number-1)
 >>> "2"
 8 *=* if number = 0
 >>> "0"
 9 *=* else
 = return number * factorial(number-1)
 >>> "1"
 8 *=* if number = 0
 >>> "0"
 9 *=* else
 = return number * factorial(number-1)
 >>> "0"
 8 *=* if number = 0
 >>> "1"
 = then
 = return 1
 >>> "1"
 >>> "1"
 >>> "2"
 >>> "6"
 >>> "24"
 >>> "120"

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Automated Type Selection and Declaration

25

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Saving ±40% of lexical tokens in your source

26

0

20.000

40.000

60.000

80.000

2002 2004

NetRexx Sourcelines
NetRexx Generated Java
NetBeans Generated Java

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Translation

27

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Parsing

§ No upfront parsing - handwritten lexer & parser combo does ‘on
demand’ parsing

§ Parse on a ‘Clause’ base
§ Stops quickly after errors in all three phases

– Clear error messages, ‘land on them’ in IDE’s (or Emacs in my case)

28

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Calling the compiler
§ Finding the compiler: here it is a fact of life that sometimes this sits in

tools.jar, sometimes rt.jar, sometimes classes.jar

§ We are doing some searching for the usual suspects, but for some
platforms, in the end, the user needs to know where it is and put it on
the classpath

§ Since some years ago we include the ecj (eclipse) compiler

§ can use alternative compilers, jikes (is that still around?), or ibm jvm
compilers

29

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Use in scripting mode

§ Compiler adds boilerplate when needed
§ and leaves it out when already there

30

generates:

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Runtime
NetRexxR.jar is currently 45463 bytes

Contains

the Rexx datatype
console I/O like say and ask
Some Exceptions like BadNumericException - consequence of calling number methods on
Rexx strings
Support for Trace
Support for Parse

This is still a reasonable size for applet support

31

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Easy integration with all existing Java infra

§ Successfully and easily use

– Java Collection Classes
– NetBeans
– Antlr
– Hibernate
– JSF

– You name it.

32

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Swing GUIs using NetBeans

33

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Antlr - specifying the interpreter for a DSL (called bint)

34

bint.g bint.nrx

Antlr .g

.java
Parser

.nrx Driver
and language

methods

.nrx
language
methods

.java
Lexer

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Java Server Faces

35

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Interpreter

§ All statement translator classes have an
interpret method.

36

ⓒ SUN

In the interpreted mode, for each class a
proxy (‘stub’) is created, that contains
method bodies that just return, and the
properties like in a ‘real’ class. The proxy
is constructed from a byte array;

When the method is called (through
reflection) the interpreter executes its
body as read from source.

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Tied to Java object model and staticness

37

A generic object editor

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Performance

§ Without going into microbenchmark discussions, NetRexx is a lot faster
than the competition - probably as a result of using plain Java source
(so leveraging javac) and a minimal runtime without any proxying of
objects, and the ‘binary’ option, which even leaves much of the Rexx
runtime untouched if Java primitive types can be used

§ The interpreter is a bit slower, but not much so - and we win that back
in development cycle turnaround.

§ Arguably, missing dynamic language features like open classes is a
pain, specially in regard of the full support of this in Open Object Rexx

38

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

NetRexx is completely written in NetRexx

39

The language is bootstrapped (starting from Classic Rexx)

A working compiler is needed to compile the compiler - save one!

Advantage:

It can be built on every platform where there is a working Java

- Like eComstation and Blue Lion

Structure of the language translator is clear - interpreter like - and
readable. Especially if you are into writing NetRexx

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Building mixed source and JavaDoc

40

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Open Sourcing (2007 - 2011)

41

Followed IBM’s open sourcing process - OSSC
Prepare source code for release
Tidy up & Package, build procedure, arrange
testing suite
Formal handover to RexxLA - The Rexx
Language Association

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Recent Additions

§ Compile from memory string (3.03) - 2015
§ Build everywhere where there is Java (3.04) - 2016
§ new eco compiler in NetRexx 3.05 (2017)
§ Annotations (3.06) - currently in beta

42

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Publications

43

Mike Cowlishaw, The NetRexx Language, Prentice Hall,
ISBN 0-13-806332-X

Heuchert, Haesbrouck,Furukawa, Wahli, Creating Java
Applications Using NetRexx, IBM 1997, http://
www.redbooks.ibm.com/abstracts/sg242216.html

Mike Cowlishaw, The NetRexx Interpreter, RexxLA/
WarpTech 2000, (netrexxi.pdf)

http://www.redbooks.ibm.com/abstracts/sg242216.html
http://www.redbooks.ibm.com/abstracts/sg242216.html
http://www.redbooks.ibm.com/abstracts/sg242216.html
http://www.redbooks.ibm.com/abstracts/sg242216.html
http://www.redbooks.ibm.com/abstracts/sg242216.html

Warpstock 2017 - René Vincent Jansen

 IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Contact

44

www.netrexx.org tools (emacs & vi modes), documents and
other information - watch that space!

rvjansen@xs4all.nl

Thanks for your attention!

“strong typing does not need more typing”

Rex regnant sed non gubernat

http://www.netrexx.org
mailto:rvjansen@xs4all.nl

