
May 18, 2019

Pipes for NetRexx
René Vincent Jansen, WarpStock Europe2019 Utrecht

pipeline |ˈpīpˌlīn|
noun
1 a long pipe, typically underground, for conveying oil, gas, etc., over long distances.
• a channel supplying goods or information: the biggest heroin pipeline in history.
2 Computing a linear sequence of specialized modules used for pipelining.
3 (in surfing) the hollow formed by the breaking of a large wave.
verb [with obj.]
1 convey (a substance) by a pipeline.
2 (often as adj. pipelined) Computing design or execute (a computer or instruction)
using the technique of pipelining.
PHRASES
in the pipeline awaiting completion or processing; being developed: new treatments are in
the pipeline.

A personal note

✤ I got acquainted with NetRexx through Pipes. I followed the NetRexx
list for some time but never anything came from it. Playing with some
homegrown stages for Pipes (re-)sparked my interest

✤ The sqlselect, timestamp and xlate stages in the Pipes product are the
first NetRexx program code I wrote back in 1997

✤ The open sourcing of NetRexx prompted me to search for the
remaining info on Pipes on the net, and to politely ask Ed Tomlinson
(whom I have never met in person) to open source the pipes compiler

✤ He kindly granted his permission - this is why we are here today at
this presentation

A caveat

✤ I am not a certified 'plumber' - with regard to pipelines, I am an
amateur. I only worked recently on z/VM - CMS.

✤ I used PIPE on TSO some 18 years ago - this was after being
introduced to Pipes for NetRexx - but never for production.

✤ My sole intention here is to make it run and make it known - insure
that people know about this very useful application of NetRexx on
OS/2

What is it
Data Flow Programming - CMS - Hartmann Pipelines

Data Flow Programming

✤ Data flow programming is a suitable top level category for this subject

✤ In computer programming, data flow programming is a
programming paradigm that models a program as a directed graph of
the data flowing between operations, thus implementing data flow
principles and architecture.

✤ The pipeline concept and the vertical-bar notation was invented by
Douglas McIlroy, one of the authors of the early command shells,
after he noticed that much of the time they were processing the
output of one program as the input to another. His ideas were
implemented in 1973 when Ken Thompson added pipes to the UNIX
operating system. DOS, OS/2, Microsoft Windows, and BeOS also
implemented the concept.

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Dataflow
http://en.wikipedia.org/wiki/Douglas_McIlroy
http://en.wikipedia.org/wiki/Unix_shell
http://en.wikipedia.org/wiki/Ken_Thompson
http://en.wikipedia.org/wiki/UNIX
http://en.wikipedia.org/wiki/DOS
http://en.wikipedia.org/wiki/OS/2
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/BeOS

McIlroy memo
"Coupling programs like garden hose"

A Unix pipe

✤ ls -l *.ls | grep | uniq

CMS

✤ Melinda Varian called Pipes "the most significant addition to CMS since
REXX".

✤ CMS Users of Rexx see Pipes and Rexx as a symbiotic environment
and tend to miss Pipes on other platforms. And complain about it.

✤ Unix pipes done a bit better, evolved over the 1980's.

✤ As presented during the 1991 International Rexx Language
Symposium, "How CMS Got Its Plumbing Fixed", by John Poul
Hartmann.

Hartmann Pipelines

✤ A pipeline consists of a collection of stages, joined together by stage
separators. Stages can be written in a variety of languages, and are
either filters that process data records or device drivers (sources and
sinks) that read data into or out of the pipeline. Unlike other
implementations of pipeline programming, Hartmann's design has
multiple streams in and out of each stage and can interconnect them
non-sequentially. Unlike many programming languages, pipelines
have a very small amount of notation, limited to stage separators
(typically "|"), pipeline separators (typically ";" or "?"), and label
separators (":"). Due to common usage, the diskread stage is also
known as < and diskwrite as >, however all stages have names that
are words in or make some sense in English.

Ceci n'est pas une pipe

http://en.wikipedia.org/wiki/Notation

Differences from Unix pipes(wiki)

Filters may have multiple inputs and multiple outputs. For example,
a selection filter can send the found records down one output pipe
and the not found records down another.
A linear notation for representing pipeline networks.
An interface that allows (Net)Rexx programs to act as stages.
A pacing strategy in the Pipeline supervisor that allows, for example,
a stream to be split, say by a selection filter, and the records on the
output legs to be processed by other filters, then merged by a join
filter and have the record order preserved in result stream.
As implied by the previous item, data streams are (generally) not
simply buffered and passed along to the next filter. The filters operate
in parallel with input and output records handled by the Pipeline
supervisor.

A Data Pipeline

Data Data
Disk Files
Console
Database

Disk Files
Console
Database

Input Output

|

 ! can replace | on Pipes and some national language versions

1st Pipe 2nd Pipe

Stage Separator

Device Drivers

✤

Reading and writing disk files:
‘diskr‘ to read a file
‘diskw’ to create or replace a file

LITERAL:
A literal creates a record with the argument string and writes to a

pipeline
Combining input drivers:

This allows the programmer to create a file at one location and
append, copy, or overwrite the file later in the pipeline.

The Console driver

✤ The console filter reads from the terminal and types on it; for
example:

pipe console | console

CONSOLE can provide two functions:
Read input, when it is first in a pipeline specification
Type the input it gets, when it is not first

A device driver that writes to a device also writes the output to the
pipeline.

Filters/Stages

✤ A filter is an application in a pipeline that takes its input from the
stage to the left and passes its output to the stage to the right.

✤ The filters that are supplied with NJPipes have many general-use
functions. They are also referred to as Stages.

✤ A function can be anything.

Buffer filters

✤ A filter that buffers a file reads all input records before writing output
records.

✤ The SORT filter must buffer the file by the nature of its processing.

✤ Use BUFFER when a file must be buffered but not reordered.

✤ Examples:

✤ pipe diskr inputfile ! split ! sort unique ! console

✤ pipe console ! buffer ! stack

Discarding and keeping records

✤ Use TAKE and DROP to retain or discard a specified number of
records from the beginning or end of the file.

✤ TAKE and DROP make it easy to select records based on their
position in the file. Example: TAKE 5

✤ The DROP filter is the converse of TAKE, which allows you to delete
the first or last n lines.

A simple example

The xlate stage documentation

From the stage source - needs to be moved to formal documentation

Date

What is NJPipes
The contents of the package - How to Install - Documentation

The package

✤ NJPipes was originally released 1997-1999, and the source of the
compiler was released in 2012. Pipes for NetRexx is integrated in the
NetRexx package

✤ NetRexx is in a Git repository at SourceForfe. All which is needed to
build and run, is in there.

✤ Build it by using make or the provided Windows batch files (thanks to
Jean Louis Faucher for fixing these).

Compiler

✤ The NJPipes compiler compiles
- and runs - a program given a
command line with device
drivers and pipe stages

✤ It predates the interpreter in
NetRexx (2000), some
experimentation with
interpreting stages is going on.

Use from
NetRexx

✤ You can use a pipe in a
NetRexx program if you call
the file .njp and send it through
the pipes compiler

✤ If you must, you can use pipes
and stages from java programs.

Stages

✤ A large number of stages is
delivered with the product

✤ Many are modelled after their
CMS Pipelines equivalent

✤ There, the CMS documentation
might be used

Roll your own

✤ Also delivered is the capability
to easily make your own pipe
stages

✤ A simple template that can be
fleshed out with your
functionality

How to install

✤ The core classes for pipes and
stages are in njpipesC.jar.

✤ This file may be used on the -cp
option or added to your
CLASSPATH.

Testing the installation

✤ To test your installation, you
can type:

✤ pipe "(test) literal
arg() | dup 999 | count
words | console"

To run the pipe type:

 java test some words

 The pipe should then output:

 2000

Delivered Stages

✤ The following pages state all
the stages that are currently
delivered with NJPipes

✤ CMS in column 1 indicates
compatibility with the CMS
Pipes product
implementation/
documentation

CMS abbrev
CMS append
CMS array
CMS arraya
CMS arrayr
CMS arrayw
CMS between
CMS change
CMS casei
CMS chop

command
compare

CMS console
CMS copy
CMS count

dam
deblock

CMS deal apl!
dict
dicta

dictr
dictw
disk
diska
diskr

diskslow
CMS drop
CMS dup

elastic
CMS fanin

faninany
CMS fanout
CMS fblock

file
filea
filer

fileslow
filew

CMS frlabel
frtarget

gate
getfiles

getovers
getstems

CMS find
hash
hasha
hashr
hashw

CMS hole

CMS insert
CMS inside
CMS join
CMS joincont
CMS juxtapose
CMS literal
CMS locate
CMS lookup

not

CMS notinside
CMS nfind

over
CMS outside

pad
CMS pick
CMS reverse

rexx
CMS serialize

specs

prefix
CMS split

stem
stema
stemw
stemr
string

CMS strfind
CMS strnfind
CMS strfrlabel

sort
sortClass
sortRexx
sqlselect

CMS take
tcpclient
tcpdata
tcplisten

CMS timestamp
CMS tokenize

CMS tolabel
totarget

timer
CMS unique

var
vector
vectora
vectorr
vectorw

CMS xlate

CMS zone

The 'rexx' stage

✤ Pipes for NetRexx moves objects. Many stages expect all objects to be
of class rexx.

✤ The rexx stage modifier will convert objects to rexx if possible.

✤ ... ! rexx in change //xxx/ ! ... to insure inputs are rexx

✤ ... ! rexx out diskr ! ... to insure output are rexx

✤ ... ! rexx somestage ! ... both inputs and outputs are rexx

A Stage template
options binary
import org.netrexx.njpipes.pipes.
import org.netrexx.njpipes.stages.
class template1 extends stage

/* run a basic stage that has very little setup to do */
method run()

 /* insert objects that need to be reset every invocation here */
 rc = 0

 do -- to catch the terminating StageError

 /* setup code goes here
 *
 * if there are setup problems then
 * signal StageError(11,'termplate1 had this error')
 *
 */

 /* body of the stage is here */

 loop forever
 object = peekto() -- pass objects of any class
 output(object)
 readto()
 end

 catch e=StageError
 end

 rc = rc(e) -- extract the rc from the StageError and update stage's rc

exit(rc*(rc<>12))

1 import org.netrexx.njpipes.pipes.

2 import org.netrexx.njpipes.stages.

3 
4 class testpipe extends Object 5 
6 method testpipe(avar=Rexx)  
7

8 F=Rexx 'abase'

9 T=Rexx 1

10

11 F[0]=5

12 F[1]=222

13 F[2]=3333

14 F[3]=1111

15 F[4]=55

16 F[5]=444

17

18 pipe (apipe stall 1000)

19 stem F ! sort ! prefix literal {avar} ! console ! stem T

20

21 loop i=1 to T[0]

22 say 'T['i']='T[i]

23 end

24 
25 method main(a=String[]) static 26 
27 testpipe(Rexx(a))

✤

Using a pipe in a NetRexx program

Debugging Pipes

✤ To find out what is happening in pipeline you have some tools. First, you can set a debug flag when you compile the
pipe. The bits you set in the flag control what it does:

✤ 1 - Show all pipes starting

✤ 2 - Show all pipes ending

✤ 4 - Show all stages starting

✤ 8 - Show all stages stopping

✤ 16 - Show all Commit requests

✤ 32 - Show all Commit completions

✤ 64 - Show StageErrors raised via stage's Error(int,String) method. The

✤ stage class uses Error for all its StageError signals.

✤ 128 - Show the argument that each stage is receiving. Handy since

✤ shells have a habit of doing unexpected thing to arguments.

✤ (try: java findtext exit *.nrx vs java findtext "exit *.nrx")

✤

Debugging Pipes II

✤ The second option is to use the invoke the dump() method in a stage
This dumps the status of the pipe using the same format you see
when a pipe deadlocks.

✤ Using dump() does not normally cause a pipe to terminate.

✤ Once in a while dump() will generate an exception. This happens
since dump() does not use protect or synchronize so it does not stall.

http://web.archive.org/web/20070405123447/http://www.cam.org/~tomlins/njpipes.html#dead

Debugging Pipes III

✤ When all else fails, recompile using NetRexx trace results

✤ You will see everything that happens

What is there still to be done
After initial release, still work to be done

To Do:

✤ Organize the test cases into JUnit suites

✤ Complete the new documentation

✤ (John Poul Hartmann himself has promised he will write a foreword)

✤ Write more stages and fitting examples

✤ Make an installer

✤ You can be part of that!

Thank you for your attention

Q? rvjansen@xs4all.nl

mailto:rvjansen@xs4all.nl

