Rexx and NetRexx
Warpstock 2017, Rotterdam
Rene Vincent Jansen 201 7-05-21

Agenda

x Rexx

x \\hat is it
= Compact History
» \\here are we now?

» Future as open source

i

Rexx

14
#
F

| HA

il

A

® Scripting Language
® Started out as an interpreter

® ‘Human instead of computer oriented

= Family of Implementations

What Is a scripting language

x A scripting language, script language or extension language is a
programming language that allows control of one or more software
applications. "Scripts" are distinct from the core code of the application,
as they are usually written in a different language and are often created
or at least modified by the end-user. Scripts are often interpreted from
source code or bytecode, whereas the applications they control are
traditionally compiled to native machine code.

= Early script languages were often called batch languages or job control
languages. Such early scripting languages were created to shorten the
traditional edit-compile-link-run process.

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/End-user_(computer_science)
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Batch_language
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Linker_(computing)

History = =

~

L ——

1

18

1 |

x 1979, Mike Gowlishaw, |IBM Vl\/h HurSleyi-. :

= |nitially reprimanded, but strongfy-ndercﬁént a,r)‘j_éﬁ—w
eventually Mike was made an IBM fellow

» \\Vas called REX (Reformed eXecutor), but after IBM
lawyers intervened and money was spent, REXX was
the new name

» Bacronym of Restructured Extended Executor

= Rexx' predecessor

®x A Single macro la
(Stephenson, 1973)

x [his language consisted mainly of Ampersands

x &IF &NODE&J |= &LOCAL &USER = &STRING OF

® [he plan was to have a PL/1 based replacement that
‘turned things around’ - a small percentage would be
literals

VWhat came out

x A language designed for the user (that is, programmer)
iInstead of the language implementer

» Unlimited precision arithmetic
x Strong PARSE statement

= Nothing to declare

® Strong built-in TRACE tool

x Relatively few keywords

x Strong String processing

History - =

|

1

i

= Strong user community. mfluencze,, VMNET:

® Principle of design and document first, then |mplement
and test

» Circulated on the network between IBM sites, made
INto a product by customer demanad

History (IBM)

x 1979 Mike Cowlishaw starts work on REX

= 1981 First Share presentation on REX

x 1982 First non-I1BM location to get REX is SLAC

x (Stanford Linear Accellerator Center)

®x 1983 Command Language for IBM VM/CMS

x 1989 REXX Supported on MVS (TS0 Extensions V2)
x 1990 REXX Supported on 0S/2 (EE) and OS/400

====5= Reference

VM/370 « CMS Summary

First Edition (November 1980) - for REX version 2.08

CONTENTS
REXCEXECE, = % e i et A todrs 8 anbesc i sy e 1
Data TOOMISE o vari s wim s @dis 65 5 8 w057 & e s haiien o5 516 B 5% 2
AN PBSSIONS ' o 5 e TG Sy g it kst e B S e e 15 2
STIOIIENTS. vl o 30555 7 o0k S sreh oo = R 8 5061 5 s i e 3
Templates'and Parsing: o ais ol s s oo e ih b s s o miiie i 5
Compound variable names.cuie e vusonnn S
Built-in variables S S s W SR R e, TS 5
Issuing commands toCMS.)
Interactive DEBUGGING -« i o i cius & s s s oo iafiol b o s o rs o 6
REXENS fUNCHON: pACKRGL: i Suiis « whiv i als i o fihe ot o jies i 46 6
REXFNS2 function package 7
REXWORDS function package. 7
UMY SMOGUIES: < ;o %in s b Tonpatome s s sibAls sabane vi vt 508 2330 il
RESEHGHDIST S o a7 St iaths s iirs o b Mok e sy 5 ks e i 8
The/Command and- ExeCiPlistii < 5 i1 6 i o s o etaim s s 8
SampIETREXIEXEC: i c <o ol s Smb Biais o e s i e e i 9

REX is a command programming language which allows you
to combine useful sequences of commands to create new com-
mands. It is used in conjunction with, or as a replacement for,
the CMS EXEC and EXEC 2 languages. REX is especially
suitable for writing Execs or editor macros, but is also a useful
tool for algorithm development.

REX EXEC

Invoke using: REX [parameter]

REX ? describes REX EXEC and how to use the
on-line help and tutorial.

REX | installs REX in your CMS system under the
name EXEC so that you may execute Execs
written in any of the three languages. You
probably will want to put ‘EXEC REX I’ in
your PROFILE EXEC.

REX enters the on-line help, viewing an index of
topics.
REX 200nn (where nn is a REX error message number)

describes the meaning of the error message
and the likely cause of the error.

(where kkk is a REX keyword) gives imme-
diate information on the specified topic.

REX kkk

Key to notation used on this card:

GOTHIC — indicates language keywords
italics — indicate defined syntactic units

[l — brackets indicate an optional item
— ellipses mean multiple items are allowed
{3 — braces specify list of alternatives (choose one)

| — separates alternatives in a list

IBM INTERNAL USE ONLY

(©)
DATA ITEMS

The REX language is designed for the easy manipulation of
character strings. Its expressions and instructions manipulate
the following items:
string A string is a quoted string of characters.
Use two quotes to obtain one quote inside
the string. The string may be specified in
hexadecimal if the final quote is followed
by an X. Some valid strings are: "Next"
"Don' 't touch' '1de8'x
A number is a string of up to 9 decimal
digits before and/or after an [optional]
decimal point. It may have a leading sign.
Some valid numbers are: 17 98.07 .101
A name refers to a variable, which can be
assigned any value. It may consist of up to
150 characters from the following selection:
AsZ, a=2,;0=9,;@ £ s 3¢ ", N 1E
The first character may not be a digit or
period, except if the name consists of the
period alone. The name is translated to up-
per case before use, and forms the initial
value of the variable. Some valid names
are: Fred COST? next_index A.j
A function-call invokes an external routine
with O to 7 arguments. The called routine
will return a character string. A
function-call has the format:
function-name(Lexpr] [,expr]...)
Function-name must be adjacent to the left
parenthesis, and may be a name or a string.

number

name

Sfunction-call

EXPRESSIONS

Most REX statements permit the use of expressions, following
the style of PL/I. Expressions are evaluated from left to right,
modified by the priority of the operators (as ordered below).
Parentheses may be used to change the order of evaluation.
All operations (except prefix operations) act on two items, and
result in a character string.
Prefix + - - Prefix operations: Plus; Minus; and Not.
(For + and -, item must evaluate to a
number, for -, it must be ‘1’ or ‘0’.)
Multiply; Divide; Divide and return the re-
mainder. (Both ifems must evaluate to
numbers.)
G402 Add; Subtract. (Both items must evaluate to
numbers.)
Concatenate: with or without blank. Abut-
tal of items causes direct concatenation.
. ER TR O SBT3 ME > K
Comparisons (arithmetic compare if both
items evaluate to a number). The == opera-
tor checks for an exact match.
& Logical And. (Both items must be ‘0’ or ‘1°.)
| && Logical Or; logical Exclusive Or. (Both items
must be ‘0’ or ‘1°.)

AL

(blank) ||

The results of arithmetic operations are expressed to the same
decimal precision as the more precise of the two items. For
example, 123.57 + 12 will result in 135.57. Results of division
are rounded rather than truncated.

IBM INTERNAL USE ONLY

1930

vm/370 - CMS

®
STATEMENTS

REX statements are built out of clauses consisting of a series
of items, operators, etc. The semicolon at the end of each
clause is often not required, being implied by line-ends and
after the keywords THEN, ELSE, or OTHERWISE. A clause may be
continued from one line to the next by using a comma at the
end of the line. This then acts like a blank. Open strings or
comments are not affected by line ends, and do not require a
continuation character.
Keywords are shown in capitals in this list, however they may
appear in either (or mixed) case. Keywords are only reserved
when they are found in the correct context.
In the descriptions below: expr is an expression as described
above; stmt is any one of the listed statements; template is a
parsing template, as described in a later section; name is usual-
ly the name of a variable (see above).
assignment: the variable name is set to the
value of expr.
expr; the value of expr is issued as a command.
ADDRESS [{name|string} [exprl]; redirect commands or a
single command to new environment.
parse the argument string into variables.
The contents of all variables except the last
are translated to upper case. (Note: the
first argument is always the name of the
Exec or subroutine.)
CALL name [expr]; call an internal subroutine. On return, the
variable name will have the value from the
RETURN statement. Subroutines may be
called recursively.
DO [name = expri [TO exprt] [BY exprb]] [{UNTILIWHILE} expr];
[stmt]... END; statement grouping with optional repetition
and condition. The variable name is step-
ped from expri to exprt in steps of exprb.
These exprs are evaluated only once at the
top of the loop and must result in a whole
number. This iterative phrase may be re-
placed by a single expr which is a loop
count (no variable used). If a WHILE or
UNTIL is given, its expr must evaluate to ‘0’
or ‘1. The condition is tested at the top of
the loop if WHILE or at the bottom if UNTIL.
DROP [name]...; drop (reset) the named, or all, variables.
EXIT [expr]; leave the Exec [with return code].
IF expr {;| THEN} stmt
[ELSEL;] stmt] if expr evaluates to ‘1’, execute the state-
ment following the ‘;” or THEN. Otherwise
(evaluates to ‘0’) skip that statement and
execute the one following the ELSE clause,
if present.
evaluate expr and then execute the resultant
string as if part of the original program.
start next iteration of innermost repetitive
loop [or loop with control variable name].
terminate innermost loop [or the loop with
control variable name].
NOP; dummy statement, has no side-effects.
PARSE ARGS [remplate]; ARGS without upper case translation.
PARSE PULL [template]; PULL without upper case translation.

name = [expr];

ARGS [template];

INTERPRET expr;
ITERATE [name];

LEAVE [name];

IBM INTERNAL USE ONLY

|

|

®

PARSE SOURCE [template]; parse program source description
‘CMS {COMMAND | FUNCTION} fn ft fm’.

PARSE VAR name [template]; parse the value of name.

PARSE VERSION [template]; parse data describing interpreter.

PROCEDURE; start a new generation of variables within a

subroutine.

read the next string from the system queue

(“stack”) and parse it into variables. The

contents of all variables except the last are

translated to upper case.

push expr onto head of the system queue

(“stack LIFO”).

add expr to the tail of the system queue

(“stack FIFO”).

evaluate expr and return the value to the

caller. (Pushes the value onto the system

queue if not a function or internal call.)

evaluate expr and then display the result on

the user’s console, using current line size.

PULL [template];

PUSH [expr];
QUEUE [expr];

RETURN [expr];

SAY [expr];

SELECT;

[WHEN expr{;| THEN} stmt]...

[OTHERWISEL;] [stmt]...]

END; the WHEN exprs are evaluated in sequence
until one results in ‘1’. the stmr immediate-
ly following it is executed and control then
leaves the construct. If no expr evaluates to
‘1’, control passes to those stmts following
the OTHERWISE which must then be present.

SIGNAL {ON|OFF} {namelstring}; enable or disable exception

traps. (The condition must be ERROR, EXIT,

NOVALUE, or SYNTAX, and control will pass to

the label of that name should the event oc-

cur while ON.)

go to the label specified. Any pending

statements, DO ... END, INTERPRET, etc. are

terminated.

if numeric then (if negative) inhibit tracing

for a number of clauses, or (if positive)

inhibit debug mode for a number of claus-

es. Otherwise trace according to first char-

acter of the value of expr:

‘E’ = trace after non-zero return codes.

‘C’ = trace all commands.

‘A’ = trace all clauses.

‘R’ = trace all clauses and expressions.

‘o as ‘R’, but trace intermediate evalua-

tion results and name substitutions also.

‘L’ = trace only labels.

‘S’ = display rest of program without any

execution (shows control nesting).

‘0’ or null = no trace.

‘I’ = trace according to the next character,

and inhibit command execution.

‘? = turn debug mode (pause after trace)

on or off.

form of labels for CALL or SIGNAL. The

colon always acts as a clause separator.

/* form of comment */ may be used anywhere except in the middle of
a name or string. (Required on first line to
identify REX Execs.)

SIGNAL expr;

TRACE expr;

name:

IBM INTERNAL USE ONLY

®
TEMPLATES for ARGS, PULL, and PARSE

The PULL, ARGS, and PARSE instructions use a template to parse
a string. The template specifies the names of variables that are
to be given new values, together with optional triggers to
control the parsing. Each name in the template is assigned one
word (without any leading or trailing blanks) from the input
string in sequence, except that the last name is assigned the
remainder of the string (if any) unedited. If there are fewer
words in the string than names in the template, all excess
variables are set to null. In all cases, all the variables in the
template are given a new value.
If PULL or ARGS are used, then the separately assigned words
only will first be translated to upper case. When this transla-
tion is not desired, use the PARSE instruction.
The parsing algorithm also allows some pattern matching, in
which you may “trigger” on either a string or a special-character
(the “(’ is useful in the CMS environment, for example). A
special-character is one of:

+ox/lh=m<>, 1) (
If the template contains such a trigger, then alignment will
occur at the next point where the trigger exactly matches the
data. A trigger match splits the string up into separate parts,
each of which is parsed in the same way as a complete string
is when no triggers are used.

COMPOUND VARIABLE NAMES

Any name may be “‘compound” in that it may be composed of
several parts (separated by periods) some of which may have
variable values. The parts are then substituted independently,
to generate a fully resolved name. In general

will be substituted to form:

where dj is upper case of s
v1-v, are values of sq-sp,.

This facility may be used for content-addressable arrays and
other indirect addressing modes. As an example, the sequence:

J=5; AJ="fred';
would assign ‘fred’ to the variable ‘A.5’.

BUILT-IN VARIABLES
There are two built-in variables:

50-51-82. === .Sp
dy.vy.vp. === .y

RC is set to the return code after each executed
command.
SIGL is set to the line number of last line that

caused SIGNAL, CALL or RETURN jump.

ISSUING COMMANDS to CMS

The default environment for commands in Execs is CMS. A
command is an expression, which may include function-calls,
arithmetic operations, and so on. Operators or other special
characters (for example ‘(* or ‘*’) must therefore be specified
in a string if they are to appear in the issued command.

To issue a CP command or call another Exec, the first word of
the expression value should be ‘CP’ or ‘EXEC’ respectively. Use
the OBEY command instead if full CMS command resolution is
to be applied.

In editor macros, the default environment for commands is the
same as the filetype of the macro.

IBM INTERNAL USE ONLY

History

x 1985 Mansfield REXX for PC/DOS

x 1987 AREXX for the Commodore Amiga

= 1990 Uni-Rexx for Unix, AlX, Tandem (Kilowatt)
x 1991 REXX for DEC/NMS

®x 1992 REXX/Imc and Regina

Regina

®x By Anders Christensen, maintained by Mark Hessling

x For Linux, FreeBSD, Solaris, AIX, HP-UX,
etc.) and also to 0OS/2, eCS, DOS, Win9x/Me/
NT/2k/XP, Amiga, AROS, QNX4.x, QNX6.X,
BeOS, MacOS X, EPOC32, AtheOS, OpenVMS,
SkyOS and z/OS OpenkEdition.

History

x 1990 First Rexx Language Association Symposium
Held

®x 1991 First REXX ANSI Committee meesting held

1996 ANSI X3274-1996 “Information Technology —
Programming Language REXX".

History

®x 1989 Rexx is a now also a compiled language

» Based on research by IBM Haifa, developed by IBM
Vienna Software Development LLab, Austria

» runtime performance Improvements, sourceless
distribution of scripts and programs

Object Rexx

®x Simon Nash, Hursley Lab, starting 1989
® | ong gestation process - delivered first in OS/2 in 1997
®x Commercial versions for Windows NT and AlX

» |n 2004 released as Open Source by IBM and
controlled by The Rexx Language Association

x Henceforth known as Open Object Rexx (ooRexx)

® WWW.0OrexXx.org

http://www.oorexx.org

THE

NetRexx NeTREexx

LANGUAGE

= The other Object Oriented sudé (of S e
= 1995, Mike Cowlishaw '

ireha Nlllexr

x Runs on the Java VM

M. F. COWLISHAW

. Compiles NetRexx to Java cle
» Added an interpreter in 2000

= \Will be open sourced, probably this year

VWhere are we now

. Rexx had its heyday of new activity around 1995

® Reputation went -undeservedly- downhill with the
“demise” of OS/2 and Workplace OS

® Classic Rexx is Strong on the Mainframe

= For the open source implementations, life has just
begun

® [here Is more value there than in most places

Warpstock 2017 - René Vincent Jansen

Wikipedia

IBM NetRexx
From Wikipedia, the free encyclopedia

NetRexx is IBM's implementation of the Rexx programming
language to run on the Java virtual machine. It supports a
classic Rexx syntax along with considerable additions to support
Object-oriented programming in a manner compatibile with
Java's object model. The syntax and object model differ
considerably from Open Object Rexx, another IBM object-
oriented variant of Rexx which has been released as open
source software.

NetRexx is free to download from IBM[1].

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Rexx
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Java_Platform
http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object_model
http://en.wikipedia.org/wiki/Open_Object_Rexx
http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Open_source_software
http://www-306.ibm.com/software/awdtools/netrexx/library/netrexxo.html

Warpstock 2017 - René Vincent Jansen

Peculiarities of NetRexx

= The Rexx Data type - implicit in other implementations, but not named
due to untyped usage

= PARSE

= TRACE

= Arbitrary numeric precision & decimal arithmetic

= Concatenation by abuttal

= No reserved words

= Case insensitive

= Automates type selection and declaration

= Autogeneration of JavaBeans properties (with properties indirect)

= Philosophy: a language should be easy for users, not interpreter writers
= ‘No reserved words’ ensures that old programs are never broken by
language evolution

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

The Rexx Data Type

= This is where statically typechecked meets type-less

= A Rexx instance can be a number or a (Unicode) string of characters

= 3+4 is the same as “3" + “4”

= We can perform (arbitrary precision) arithmetic on it when it is a number
= The Rexx type keeps two representations under the covers (if needed)

= The Rexx way to handle decimal arithmetic ended up in Java and in
IEEE 754r, implementation of BigDecimal actually written in NetRexx

= Automation inter-conversion with Java String class, char and charf]
arrays, and numeric primitives (optional)

You can forego the language and use the Rexx Datatype, from the runtime
package, in your Java source

Equally, you can decide not to use the Rexx type at all in your NetRexx
source

| IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Numeric Precision

(options binary to avoid this and have Java primitive types as much as
possible)

Rexx has arbitrary precision numbers as a standard - implemented in the
runtime Rexx Datatype.

say 1/7 numeric digits 300

0.14285714285714285714285714285714
2857142857142857142857142857142857
1428571428571428571428571428571428
9714285714285714285714285714285714
2857142857142857142857142857142857
1428571428571428571428571428571428
5714285714285714285714285714285714
2857142857142857142857142857142857
142857142857142857142857142857

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Parse

= not your standard regexp parser - it is template based
= can do lispy things

| IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

VWaould be this
IN NetRexx

cdr = “foo bar baz”
loop while cdr <> “

parse cdr car ' * cdr
line = line car.upper(1,1)
end

Warpstock 2017 - René Vincent Jansen

Built-in TRACE

= for you (and me) who still debug best using print statements - saves

time
= adds them automatically during compile
= can leave them in and switch off during runtim
= best way to debug server type software
= can ‘trace var’ to keep a watchlist
= or ‘trace results’ to see results of expressions

class fact

method main(args=String[]) static
factorial(5)

method factorial(number) static]
trace results
if number = 0 then return 1
else return number * factorial(number-1)

IBM & |-Bizz IT Services & Consultancy

e

hdnm
if number =0

oo
v
v

Q

[(e]

else
return number *

if number =0

S _ K

[(e] o]
\A

* * * * *
o * o F * o F * o F * o F * ||
**VILV*ILVILV*ILVILV*ILVILV*IL¥ILV IIVII

else
return number *

>"3"
if number =0
>"Q"

(OOO

else
return number *

>"2"
if number =0
>"Q"

(OOO

else
return number *

1
if number =0
>"Q"

(OOO

else
return number *

oo

>"Q"
if number =0
1
then

return 1
>>> Il1 n
>>> Il1 n
>>> Il2ll
>>> Il6ll
>>> Il24ll
>>> Il1 20“

factorial(number-1)

factorial(number-1)

factorial(number-1)

factorial(number-1)

factorial(number-1)

© 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Automated Type Selection and Declaration

backage com.abnamro.midms.util.ssl

import java.io.

import java.net.

import java.rmi.server.

import javax.net.ssl.

import java.security.KeyStore

import javax.security.cert.X509Certificate

-- mind: if this does not compile you probably do not have jsse.jar on your classpath
class RMISSLServerSocketFactory implements RMIServerSocketFactory, Serializable

method createServerSocket(port=int) returns ServerSocket signals IOException
do

-- set up key manager to do server authentication
passphrase = char[] "passphrase”.toCharArray()

ctx = SSLContext.getInstance("TLS")
kmf = KeyManagerFactory.getInstance("Sunx509")
ks = KeyStore.getInstance("JKS")

ks.load(ClassLoader.getSystemClassLoader().getResourceAsStream("dmskey"),passphrase)
kmf.init(ks, passphrase)

ctx.init(kmf.getKeyManagers(), null, null)

ssf = ctx.getServerSocketFactory()

catch e=Exception
e.printStackTrace()

end

return ssf.createServerSocket(port)

| IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Saving £40% of lexical tokens in your source

80.000

Le 1 wwe delweccar sdodae LWC

-CEG-‘M‘fhllnﬁlﬂ'\“"- I [Covun vl 1V uw I _53 LRl 1 v I 1 ilay Yigw I

TREEE

3 PR
15 TreQrreratedunigie |4
cantthr swelgwe ta

60 OOO ¥ fm Dol Conzact slessfies Faetemeen i Osget o lavoved Marty.
- [

- = frodact

wolsed Fary Q1D

Irvontsnd Party Tynn 19 Acarnlaatize that

- -L: Cermzilien salnguancateg
< Merent sudanypes of
rvshond Party
= = Locoatk azenccieg alselr
- nherzet
o~ L= Mowrer Bem zrarasander o and

40.000

Covime ity OF ke rwal O Szevitilkculae

> = Arangewent Cormualy ef Inzrest
_ At lraivdday mparr st

- |_: Auozzenling Li=

> = vt

L= —— ObjortEot.a 17 Dhtnyishes bareoze

oaland s toal shjnc

20.000

Yu w. nvelbovd Purly

Tancan 2o Aty sarty anne acanindvdus s Orgy tbatias asCrgae 2ot an sk ate.
nnz Lt whis s ANN ANTED st fo mereinin inforenlios

Irvontsnd Party Lt 08 Dictingalehar hatans

Cipuzle Blulus Type M stesexinlse v
zpew ol an vz vee
Party
O Frivury Mare 17 Szectibelse o may

=emu ef by nveboed [:J

2002 20 04 | |200402.27 1413 37 22 r2o. ~|

M NetRexx Sourcelines
[NetRexx Generated Java
[0 NetBeans Generated Java

| IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Overall translator organization

Translator Tokenizer

Y

Program
Babelizer

Y

Parse
control

Y

Clause
parsers

Term parser Expressions

Converter Variables

27 IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Parsing

= No upfront parsing - handwritten lexer & parser combo does ‘on
demand’ parsing
= Parse on a ‘Clause’ base
= Stops quickly after errors in all three phases
— Clear error messages, ‘land on them'’ in IDE’s (or Emacs in my case)

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Calling the compiler

= Finding the compiler: here it is a fact of life that sometimes this sits in
tools.jar, sometimes rt.jar, sometimes classes.jar

= We are doing some searching for the usual suspects, but for some
platforms, in the end, the user needs to know where it is and put it on
the classpath

= Since some years ago we include the ecj (eclipse) compiler

= can use alternative compilers, jikes (is that still around?), or ibm jvm
compilers

| IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Use In scripting mode

= Compiler adds boilerplate when needed
= and leaves it out when already there

say "hello JVM languages Summit!"

generates:

|/* Generated from 'hello.nrx' 22 Sep 2008 19:57:00 [v3.00] */
/* Options: Crossref Decimal Format Java Logo Replace Trace2 Verbose3 */

public class hello{
private static final java.lang.String $0="hello.nrx";

public static void main(java.lang.String $0s[]){
netrexx.lang.RexxIO.Say("hello JVM languages Summit!");
return;}

private hello(){return;}
N

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Runtime
NetRexxR.jar is currently 45463 bytes

Contains

the Rexx datatype
console /O like say and ask

Some Exceptions like BadNumericException - consequence of calling number methods on
Rexx strings

Support for Trace
Support for Parse

This is still a reasonable size for applet support

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Easy integration with all existing Java infra

= Successfully and easily use

—Java Collection Classes
— NetBeans

—Antlr

— Hibernate

— JSF

—You name It.

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Swing GUIs using NetBeans

£

Ruusitury

L)

& ful‘u Dot Concepl slussiliue Fundamuntsl Objuct

o8 -r:

ol -r:

lrl'.ll irlHl {L‘I 'l"'l' lrl.'l I.Lll

.f.".

Invelved Pur

Product

i S

B Pz cli e -
T onct Soazilk Freparbes .
Bﬁ ras Mo a3l S st Fupale s

condition
|

Rusvurcy It\
Arrangumes

4 |
aoocounting

AN IO [
il NPT AL TR I D L]
(D Persa b

== 1% o S v o Uzhare |

-t L3 aCHk Zdraavd ..

RELE NTTHIN IR S B I I S B

LAl ANOEE MR VT AL e e

%‘_ RHLER S UL T r

|
Event

I sryiage .. L
Fapueil
IBe M

Inweived P

Recon
Lo e
lenss

CID
Prrcary Name

Ahzrmivind Narra

1€
Ivcbind Party

"

Dawerizdas

Thitear be any povry. cict 3ean vd.

Supes Tyze

Furcameatae Qoo

Puzlaliez Szveme

Cuaw Concopt

Fovmmal 5cieme

Rtk \Wohis Sevame Ranc

Qv

Cus Coocopt
e

chver carranmamma mdne rads haes ..

N R I Chvx Bovr on Saurce Typa Cown Mads IveMoadon
Involvud Purly D10 1:1 m:nr:;?ralu:n.:lm- Determiiog Tyse lvabesd Party

Involved Party Typz 11

Cammunity OF intareat W

Objuct Stslus 1:1

an Involved Farty.

A assiticatca that
distinguishes the
difforonl sub-tyous of
Involvod Party
accasding te thzle
Inherent

characteristics and
fpenfasztan

Cammuanity af nterast
an Incividual is sart 7.

Cslnga shues butwesn
real and v 7tuo cb ects,

Iz vz Iy Frowis
late Puzuhiton T nckan:
Laer Pazuaras Tromnm:

Chactloc Ralvdonesls Tyzee

AT Acvwe ME Sabaa Antsiy Manag..
15002101 20C00D
S2E320410 152450

L

Chact T Rabvdonetls Tyzac

[Canea v oA Dantes oty T

Parct n Duotad Tree

Lo Covcopt cwala Funcamarts ..

Parcrt i Seherad Quetad Tree

Partuoring fchtornhp Type

Lo Concopt cwalor Funcemeres ..

*;. o Crger sster Jut

= 3O hunzes demcles Orgavizcot Jne 200232
<t Srpanmeon Lnit Ui Spe e Sevic

=T Grpanmson LncSusen Tyne Sasxfs Segviinzat un

[Doex
Iy .

organ zatcn Unit etc,

» ebhefae Oanin

Involved Party L fo M Dstrnzashas betacan
Cyu v Statue Tyou Lhe slagoe ¢ Lo To
cycle of an Involved
Party

=+ Mrane Orgviimzar may be canzaces of Opanndon U
=+ Leconrdrg Tares OQpatiodas Utk cacarpoes 4o acese
o Alrccezial By Oegoniatos Ust vacalearbsel fcoves) O

< 4t tMarages o = q-UE wi 200
Primary Nama 191 Epeatastha arimary Crganzat oo St Maages manggse Orpanauzn Use 20

name ¢t the nvolvad - LB Maleas Ogenaues Uit covcnrpoos e Lol wiaha:

B Fanwuzn furysn Sogenceton Jut Jocomzues fae unct

ML I A&37 Aoy

I Bl Yew 2’m;;ioer Vdwwess H2p

LE Clnsmbisatinr H 3-anhy - [Cezamentaticr Yisw] 5% Mzooing Yiew Ficturs Yiew I
T ESOTLI® Atabutes & |lelstons..) ...
TN €87 2o any carty, eu
Aanut walzh AEN AMRO |

Seanzy Numza 3 Sewncy hunbe of Ogerauss Ui

o b sepaes by Crgeviest
Ty el saudee Opvtimeas
idluae Drepnavcon Jare 120043

€ srwaded ty Dpanadon ek 1003

Gddias Cloeanbnden Lisk dr soudimms ~Mea bor Crassbne

an

IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Antlr - specifying the interpreter for a DSL (called bint)

return

bint.g bint.nrx
header class bint implements bintInterface
{ .
package com.abnamro.midms.bint; method parseFile(s=InputStream)
} do
lexer = bintLexer(s)
{ parser = bintParser(lexer)
import java.io.*; parser.bintInstance = this;
import java.rmi.*; parser.program()
}
catch e = Exception
class bintParser extends Parser; System.err.println("parser exception: " e)
options { e.printStackTrace()
kK = 2;: errorText = e.getMessage()
exportVocab=bint; this.rollBackAndQuit() .'axna
codeGenMakeSwitchThreshold end -~ do Antlr . l J

2;
codeGenBitsetTestThreshold 3;
buildAST = false;

} - i 4
{ Java
public bintInterface bintInstance ; \ l

}

program

: (statement)+ EOF o 1y Drivdl
statement language f and langu
met

IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Java Server Faces

<f:view? |
<h:form id="AddSystemForm">

<h:inputText id="PrimaryNameIn" value="#{addSystem.primaryName}" />
 <h:outputText id="PrimaryNameOut" wvalue="System Name'/>

<h:inputText id="UriIn" value="#{addSystem.systemAddress}" />
 <h:outputText id="UrioOut" value="IP Address or DNS Name"/>

<h:commandButton action="#{addSystem.add}" value="Add System" />

<h:commandButton action="#{addSystem.gobackl" value="Return to Subscription" /><b

£> "o/ AduSrpslemunes (Vo umnes W kepave/aee womi/atnamioiad/acm o AddSys e, e
</h:form> method setSystemdddress (gs=String)

- s thi . -
< / fFiview> S.systemaddress 8

method getSystemAddress() returns string
return this.systemaddress

method add() returns string
transaction = this.sesgion .beginTransaction()
uri = UniformResourcelocator()
l if this.getSystemAddress() = null then this.setSystemAddress('localhost')
uri .setPrimaryName (" http://"this.getSystemAddress()" :B0BO/invoker/JNDIFactory =

this.session .save(uri)

sip = SystemImplementationService() i

if this.getPrimaryName= null then this.setPrimaryRame('dummy name') ‘

sip.setPrimaryName(this.getPrimaryName())

sip.setUniformResourcelLocator (uri)

this.session .save(gip)

transaction.commit()

Say CRDutil.getUsexr() 'added a SystemImplementationservice at' this.getsystemas
sddress ()

return r"success"”

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

= All statement translator classes have an
interpret method.

-L!“_‘-' i
)

VIS AP TS PP oty

Interpretation

frensetor Ll In the interpreted mode, for each class a
. proxy (‘stub’) is created, that contains
g method bodies that just return, and the

v properties like in a ‘real’ class. The proxy

Parse Is constructed from a byte array;
con /
Y

Clause When the methOd |S Ca”ed (through

parsers

reflection) the interpreter executes its
body as read from source.

| IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017

René Vincent Jansen

Tied to Java object model and staticness

cIlD
Prrcary Name

Ahzratvind Narra

€6
Ivabied Party

"

Dawrizdas Thitear be 3y Ty €ict 3ean nd.
Supz- Tyze Furcamera Qoo
Puzlabizz 3zveme Caw Concopt
Formal 3z Cawn Cunq:
do ’ ‘ Nask \W this Scrame Rane e
/* check whether the getter returns an object instance. it e [
* does, we pass it an EditorVisitor instance that handles the
s 5 = ~ ;o 77 P 2 Chvex Bovr on Saurce Typa CoawnPMads IveMoadon
* editing this of course polymorphically with double dispatch
* on the indirect object. RSSO hivoleed Purty
,r/ Iz uzes I Provis AT Acv e ME Sabaa Anesiy Manag..
invokeResult = this. globalGetter getMethod().invoke (this.globalObject, null) lrte Pozcheion T ncten: 150043101 200003
/* if the result from the Getter invocation is Pu;;, we Laer Pazu vrans Tmamms 22632011 152429
» .LnSbantiaL’e a new Lji)-/ ect aﬂ(i a.LSC‘ .Qave .L epb an Chactloc Halvdanesls Tyzac U
*e C]'l torvisitor. Chact O Rabvdonesls Tyzac [Canea e oA oot oty T
*/
- . Parcrt b Quotad Tres Lot Concept cwala Funcamets ..
if invokeresult = null then -
Parcrt b Schermad Quotad Tres Cutu Concept cwafa Funcaments ..
do
do Partuoring fchitornhp Type
cls = Class.forName(this.globalGetter.getMethod().getReturnType().getName())
clz = cls.newInstance()
(Visited clz).accept(edV)
edV.getEditor.setFont (this.dialogFont)
ppp.validate ()
this.panel.validate()
catch Exception
say "Exception instantiating object-to-be-edited"”
end L] n L]
end A generic object editor
else
do

(Visited invokeResult).accept (edV)
edV.getEditor.setFont (this.dialogFont)
pPpp.validate ()

this.panel.validate()

IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Performance

= Without going into microbenchmark discussions, NetRexx is a lot faster
than the competition - probably as a result of using plain Java source
(so leveraging javac) and a minimal runtime without any proxying of
objects, and the ‘binary’ option, which even leaves much of the Rexx
runtime untouched if Java primitive types can be used

= The interpreter is a bit slower, but not much so - and we win that back
In development cycle turnaround.

= Arguably, missing dynamic language features like open classes is a
pain, specially in regard of the full support of this in Open Object Rexx

| IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

NetRexx is completely written in NetRexx

The language is bootstrapped (starting from Classic Rexx)

A working compiler is needed to compile the compiler - save one!
Advantage:

It can be built on every platform where there is a working Java

- Like eComstation and Blue Lion

Structure of the language translator is clear - interpreter like - and
readable. Especially if you are into writing NetRexx

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Building mixed source and JavaDoc

COMPLLE COMMAND = java -Xnslzs8M -XmxZ5€M CUM.ibm.netrexx.proccess.NetR2xXC

Lrx.class:
$ (COMPILE COMMAND) $< —corments -sourcedir -time -keep -raplace -pipn -format -warnexit(
nv $*.,java.keep 3*.java

NEX_SKC i= $(wildcard *.nrx)

NEX OEJS t= $(NRX_SRC:.nrx-.clacs)
JAVA_SERC t= $(wildcard *.java)
JAVA_OBJS t= $(JAVA_SRC:.java—.class)
DOCPATH i=

DOCCLASSPATII i-

DOCTITLE t=

WINDOWTITLE =

LEUFFIXES: .nrx .nry .njp .class .zkel .xsl .java .pl

#
target all compiles the netrexx and java code
#
alls: §(NRX_ORTS) §(JAVA ORIS)
#
target clean removes compiled products
#
.PHONY: clean
clean:
rm -Z *.class
rm -Z ¥ crossref
rm -Z *.bak
find . —-name "*.nrx" awk '{$$2 = $S1 ; sub (/\.nrx/,6 ".java",$$1) ; print $51 }' | xargs rm -f
.PHONY: doc
doc:

mkdir -p $(DOCPATH)
javadoc -o-Xmx1z3M -c_asspath "$(DOCCLASSPAIH)™ -private -author -version -breakiterator -use -d $(DOCPATH
i) —bottom $(BOTTOM) -header $(HEADER) -wincowtitle $(WINDOWIITLE) -coctitle $(DOCTITLE)

40 | IBM & I-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Open Sourcing (2007 - 2011)

Followed IBM’s open sourcing process - OSSC
Prepare source code for release

Tidy up & Package, build procedure, arrange
testing suite

Formal handover to RexxLA - The Rexx
Language Association

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Recent Additions

= Compile from memory string (3.03) - 2015

= Build everywhere where there is Java (3.04) - 2016
= new eco compiler in NetRexx 3.05 (2017)

= Annotations (3.06) - currently in beta

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

Warpstock 2017 - René Vincent Jansen

Publications

Mike Cowlishaw, The NetRexx Language, Prentice Hall,
ISBN 0-13-806332-X

Heuchert, Haesbrouck.Furukawa, Wahli, Creating Java

Applications Using NetRexx. IBM 1997/, http://
www.redbooks.ibm.com/abstracts/sg242216.html

THE

Mike Cowlishaw, The NetRexx Interpreter, RexxLA/ NETREXX
WarpTech 2000, (netrexxi.pdf) LANGUAGE

M. F. COWLISHAW

IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

http://www.redbooks.ibm.com/abstracts/sg242216.html
http://www.redbooks.ibm.com/abstracts/sg242216.html
http://www.redbooks.ibm.com/abstracts/sg242216.html
http://www.redbooks.ibm.com/abstracts/sg242216.html
http://www.redbooks.ibm.com/abstracts/sg242216.html

Warpstock 2017 - René Vincent Jansen

Contact

www.netrexx.org tools (emacs & vi modes), documents and
other information - watch that space!

rvijansen@xs4all.nl st B
tacw uadt ubivg
Thanks for your attention! ‘l%"“ ’ ;%’

]A\‘Af(‘- fife\nh TS

/ro(’e»\c —— _
:Ivaaméua&e-mwwihcow

“strong typing does not need more typing”

| IBM & |-Bizz IT Services & Consultancy © 2008 IBM Corporation

http://www.netrexx.org
mailto:rvjansen@xs4all.nl

